ボルト継手計算書

H390x300x10x16

建築仕様

(SI単位)

ヒロセ株式会社

ボルト継手(H390×300)の設計

1.設計条件

母材にボルト孔がある場合、引張力に対し、ボルト孔分が抵抗できないため、ボルト孔を控除 した母材の抵抗力を設計強度とする。

添接板の設計は、設計強度に対し、添接板の断面性能に応じて、フランジとウエブに応力を分 配する。

(1) 許容応力度

(母材と添接板の材質は同一とする。)

(鋼材コ-ド) SS400-K

(ボルトコード) F10T-K

「鋼構造設計規準(日本建築学会)」に準拠する。

仮設鋼材の許容応力度の割増 係数 = 1.50

H形鋼の許容曲げ・引張応力度 μ ba=μ ta= 235 N/mm^2 (SS400)

H形鋼の許容せん断応力度 135 N/mm²

H 形 鋼 の許容支圧応力度(1.25×235×係数 _H a = 441 N/mm² (SS400)

添接板の許容曲げ・引張応力度。 ba=p ta= 235 N/mm² (SS400)

添接板の許容せん断応力度 _P a = 135 N/mm²

441 添 接 板 の許容支圧応力度(1.25×235×係数 p a = N/mm² (SS400)

 $_{B}$ a = N/mm² ボルト の 許 容 せ ん 断 応 力 度 220 (F10T)

(2)設計母材 コ-ド: H390

H 形鋼: H390×300×10×16

 $<_{D}t>$ $< _{D}b >$ $<_{D}L>$

フランジ:2・PL-12 300 550 4 • P L -12 120 550

ウェブ:2・PL-240 310

(4)ボ ル ト

ボルト直径(M22) d = 2.20 cm

ボルト孔径(d+3mm) dh = 2.50 cmフランジのボルト本数 n1 =

4 本 _(軸方向) n2 = 本 (軸横断) 2 ウ ェ ブのボルト本数 m1 = 3

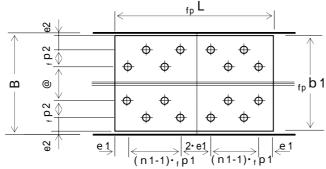
本 (軸横断) 本 _(軸方向) m2 =

縁端距離(応力方向) e1 = 4.0 cm フランジボルトの軸方向間隔

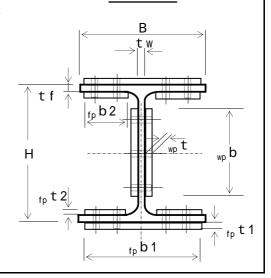
縁端距離(その他) e2 = 4.0 CM

フランジボルトの横断方向間隔

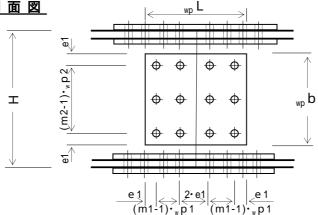
 $_{\rm f}$ p 2 = 4.0 cm


ウエブボルトの軸方向間隔 $_{\rm w}$ p 1 = 7.5 cm

ウエブボルトの横断方向間隔

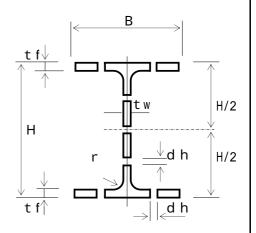

 $_{\rm w}$ p 2 = 8.0 cm

平面図


(3)添接板

断面図

側面図



2.継手部の設計

(1) 母材の断面性能計算

1) 母材 H390×300×10×16

```
H 形 鋼 の 高 さ H = 39 cm
H 形 鋼 の 幅 B = 30 cm
ウ ェ ブ 厚 tw= 1.0 cm
フ ラ ン ジ 厚 tf= 1.6 cm
フ ィ レ ッ ト r = 1.3 cm
断 面 係 数 Z = 1940 cm³
断面二次モ・メント I = 37900 cm⁴
```


2) ボルト穴を控除した断面性能

ボ ル ト 孔 径 dh = 2.50 cm
フランジボルトの本数 n2 = 2 本
$$_{(軸横断)}$$

ウェブボルトの本数 m2 = 3 本 $_{(軸横断)}$

(断面積)

(ウエブ・ボルト孔)
$$_{B}Aw = dh \cdot tw \cdot m2$$
 = 2.50 × 1.00 × 3 = 7.50 cm²

$$(\dot{\eta} I J')$$
 $_{H}Aw' = tw (H - 2 \cdot tf) - _{B}Aw$
= 1.00 \times (39 - 2 \times 1.60) - 7.50
= 28.30 cm²

(フランジ・ボルト孔)
$$_{B}Af = dh \cdot tf \cdot n2$$

= 2.50 × 1.60 × 2 = 8.00 cm²

(77)
$$_{H}Af' = A - tw(H - 2 \cdot tf) - 2 \cdot _{B}Af$$

= 133.20 - 1.00 × (39 - 2 × 1.60)
- 2 × 8.00
= 81.40 cm²

$$A' = {}_{H}Af' + {}_{H}Aw' = 81.40 + 28.30 = 109.70 \text{ cm}^{2}$$

(断面二次モ・メント:ウエブ孔は控除しない場合)

$$\begin{array}{rcl}
B I f = \frac{d h \cdot t f^{3} \cdot n2}{12} & = & \frac{2.50 \times 1.60^{3} \times 2}{12} \\
& = & 1.707 \text{ cm}^{4}
\end{array}$$

(片フランジボルト孔)
$$_{B}$$
 If = $_{B}$ Af・ $(1/2 \cdot H - 1/2 \cdot t f)^{2} + _{B}$ I f

$$= 8.000 \times 18.700^{2} + 1.707 = 2799 \text{ cm}^{4}$$

(両フランジボルト孔)
$$_{B}$$
 I f ' = 2 $_{B}$ I f = 2 $_{C}$ x 2799 = 5598 $_{C}$ cm⁴

$$I' = I - {}_{B}If' = 37900 - 5598 = 32302 \text{ cm}^4$$

(断面係数)

$$Z' = \frac{I'}{1/2 \cdot H} = \frac{32302}{19.50} = 1657 \text{ cm}^3$$

(2) 添接板の断面積の計算

1) フランジ添接板

外 側 板 幅 fp b 1 = 30.0 cm 板 厚 fp t 1 = 1.20 cm

内 側 板 幅 fp b 2 = 12.00 cm 板 厚 fp t 2 = 1.20 cm

ボルト孔径 dh = 2.50 cm ボルト本数 n2 = 2 本 (軸横断)

(外側添接板)

$$_{B}Af1 = dh \cdot _{fp}t1 \cdot n2$$

 $= 2.50 \times 1.20 \times 2 = 6.00 \text{ cm}^2$

 $_{P}Af1 = _{fp}b1 \cdot _{fp}t1 - _{B}Af1$

 $= 30.00 \times 1.20 - 6.00 = 30.00 \text{ cm}^2$

(内側添接板)

 $_{B}Af2 = dh \cdot _{fp}t2 \cdot n2$

 $= 2.50 \times 1.20 \times 2 = 6.00 \text{ cm}^2$

 $_{P}Af2 = 2 \cdot _{fp}b2 \cdot _{fp}t2 - _{B}Af2$

 $= 2 \times 12.00 \times 1.20 - 6.00 = 22.80 \text{ cm}^2$

(フランジ合計)

 $_{P}Af = 2 \cdot (_{P}Af1 + _{P}Af2)$

= 2 \times (30.00 + 22.80) = 105.60 cm²

2) ウェブ添接板

板 幅 wp b = 24.0 cm

板 厚 wp t = 0.90 cm

ボルト本数 m2 = 3 本 (軸横断)

 $_{B}Aw = dh \cdot _{wp} t \cdot m2$

 $= 2.50 \times 0.90 \times 3 = 6.75 \text{ cm}^2$

 $_{P}Aw1 = _{wp}b \cdot _{wp}t - _{B}Aw$

 $= 24.00 \times 0.90 - 6.75 = 14.85 \text{ cm}^2$

(ウェブ合計)

 $_{P}Aw = 2 \cdot _{P}Aw1$

= 2 \times 14.85 = 29.70 cm²

3) 断面積

 $_{P}A = _{P}Af + _{P}Aw A'$

 $= 105.60 + 29.70 = 135.30 \text{ cm}^2 > 109.70 \text{ cm}^2$

-0K-

(3) 添接板の断面二次モ - メントの計算

1) フランジ添接板

外 側 板 幅 fp b 1 = 30.00 cm ボルト孔径 dh = 2.50 cm 板 厚 fp t 1 = 1.20 cm フランジ n2 = 2 本 (軸横断) ウ エ ブ m2 = 3 本 (軸横断) 面 積 PAf1 = 30.00 cm² 内 側 板 幅 fp b 2 = 12.00 cm 板 厚 fp t 2 = 1.20 cm 面 積 PAf2 = 22.80 cm²

(外側添接板)

(内側添接板)

(フランジ合計)

$$_{P}If = 2 \cdot (_{P}If1 + _{P}If2) = 2 \times (12124 + 6827) = 37902 \text{ cm}^{4}$$

2) ウェブ添接板

板 幅 wp b = 24.00 cm 板 厚 wp t = 0.90 cm ボルト間隔 wp2 = 8.0 cm

$$PIW1 = \frac{\text{wp t} \cdot \text{wp b}^{3}}{12} = \frac{0.900 \times 24.00^{3}}{12} = 1037 \text{ cm}^{4}$$

$$y = y 1^{2} + y 2^{2} + y 3^{2} + \dots = 64.00 \text{ cm}^{2}$$

$$PIW1 = dh \cdot \text{wp t} \cdot 2 y + m2 \cdot \frac{\text{wp t} \cdot (dh)^{3}}{12}$$

$$= 2.50 \times 0.90 \times 2 \times 64.00$$

$$+ 3 \times \frac{0.90 \times 2.50^{3}}{12}$$

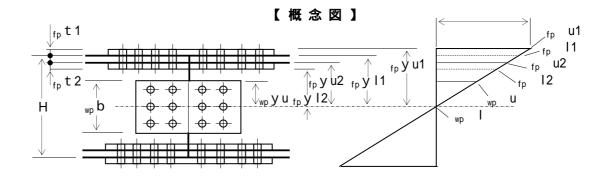
$$= 292 \text{ cm}^{4}$$

(ウェブ合計) $_{P}Iw = 2 \cdot (_{P}Iw1 - _{P}Iw1) = 2 \times (1037 - 292) = 1490 \text{ cm}^{4}$

3) 断面二次モ - メント

$$_{P}I = _{P}If + _{P}Iw I'$$

$$= 37902 + 1490 = 39392 cm^{4} > 32302 cm^{4} - OK-$$


(4) 曲げモ - メントの計算

1) H形鋼1本当たりの抵抗曲げモ・メント

許容曲げ応力度 H ba = 235 N/mm² 断 面 係 数 Z' = 1657 cm3

$$Mr = H ba \cdot Z'$$

$$= 235 \times 1657 \times 10^3 = 389395000 \text{ N} \cdot \text{mm}$$

2) フランジ添接板およびボルトの検討

$$_{P}Mf = Mr \cdot \frac{_{P}If}{_{P}I}$$

$$_{P}I = 39392 \text{ cm}^{4}$$
 $_{P}If = 37902 \text{ cm}^{4}$

$$= 389395000 \times \frac{37902}{39392} = 374666158 \text{ N·mm}$$

(外側フランジ)

$$_{P}Mf1 = _{P}Mf \cdot \frac{2 \cdot _{P}If1}{_{P}If}$$

$$_{P}If1 = 12124 \text{ cm}^{4}$$

$$\times \frac{24248}{37902}$$

$$= 374666158 \times \frac{24248}{37902} = 239694607 \text{ N·mm}$$

$$_{fp}$$
 y u1 = 1/2 · H + $_{fp}$ t1 = 1/2 × 39.0 + 1.20 = 20.70 cm

$$_{fp}$$
 $u1 = \frac{_{P}M f1}{2 \cdot _{P} I f1} \cdot _{fp} y u1$ $_{P}$ ba

$$= \frac{239694607}{2 \times 12124} \times \frac{20.70}{1000} = 205 \text{ N/mm}^2 < 235 \text{ N/mm}^2$$

-0K-

$$1.35 \, \text{N/mm}^2$$

$$_{\rm fp}$$
 y I1 = 1/2 · H = 1/2 × 39.0 = 19.50 cm

$$1/2 \times 39.0$$

$$_{fp}$$
 I1 = $\frac{_{P}Mf1}{2 \cdot _{P}If1} \cdot _{fp}yI1$ $_{P}$ ba

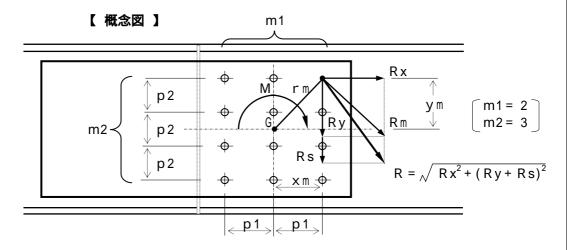
$$= \frac{239694607}{24248} \times \frac{19.50}{1000} = 193 \text{ N/mm}^2 < 235 \text{ N/mm}^2$$

-0K-

3) ウェブ添接板およびボルトの検討

$$_{P}Mw = Mr \cdot \frac{_{P}Iw}{_{P}I}$$

$$= 389395000 \times \frac{1490}{39392} = 14728842 N \cdot mm$$


$$_{wp} y u = 1/2 \cdot _{wp} b = 1/2 \times 24.00 = 12.00 cm$$

$$_{\text{wp}}$$
 $u = \frac{PMW}{PIW} \cdot _{\text{wp}} y u \qquad P \quad a$

$$= \frac{14728842}{1490} \times \frac{12.00}{1000} = 119 \text{ N/mm}^2 < 235 \text{ N/mm}^2$$

ボルト1本の耐力 (F10T)

ルト1本の耐力 (F10T)
$$M$$
 22 B A = 1/4・ ・ d^2 = 3.801 cm^2 380.1 mm^2 S1 = $2 \cdot B$ A $\cdot B$ a (二面せん断) E 2 × 380.1 × 220 = 167244 E S2 = E d · E t $W \cdot B$ A (鋼板の支圧) E 2 × 10 × 441 = 97020 E (最小) E Sa

Ip =
$$1/12 \cdot m1 \cdot m2 \{_{w}p1^{2}(m1^{2}-1) +_{w}p2^{2}(m2^{2}-1) \}$$

= $1/12 \times 2 \times 3 \times \{ 7.50^{2} \times (2^{2}-1) \}$
= 340 cm^{2}

(ボルト群の回転中心Gから最外端ボルトまでの距離)

$$x m = 3.75 \text{ cm}$$

 $y m = 8.00 \text{ cm}$

$$rm = \sqrt{3.75^2 + 8.00^2} = 8.84 \text{ cm}$$

$$Rx = \frac{{}^{p}Mw}{Ip} \times ym = \frac{14728842}{340} \times \frac{8.00}{10} = 34656 \text{ N}$$

$$Ry = \frac{{}^{p}Mw}{Ip} \times xm = \frac{14728842}{340} \times \frac{3.75}{10} = 16245 \text{ N}$$

$$Rm = \frac{{}^{p}Mw}{Ip} \times rm = \frac{14728842}{340} \times \frac{8.84}{10}$$

$$= 38295 \text{ N} < 97020 \text{ N} -0\text{K}-$$

(5) せん断力の計算

1) H形鋼1本当たりの抵抗せん断力

2) ウェブ添接板の応力度

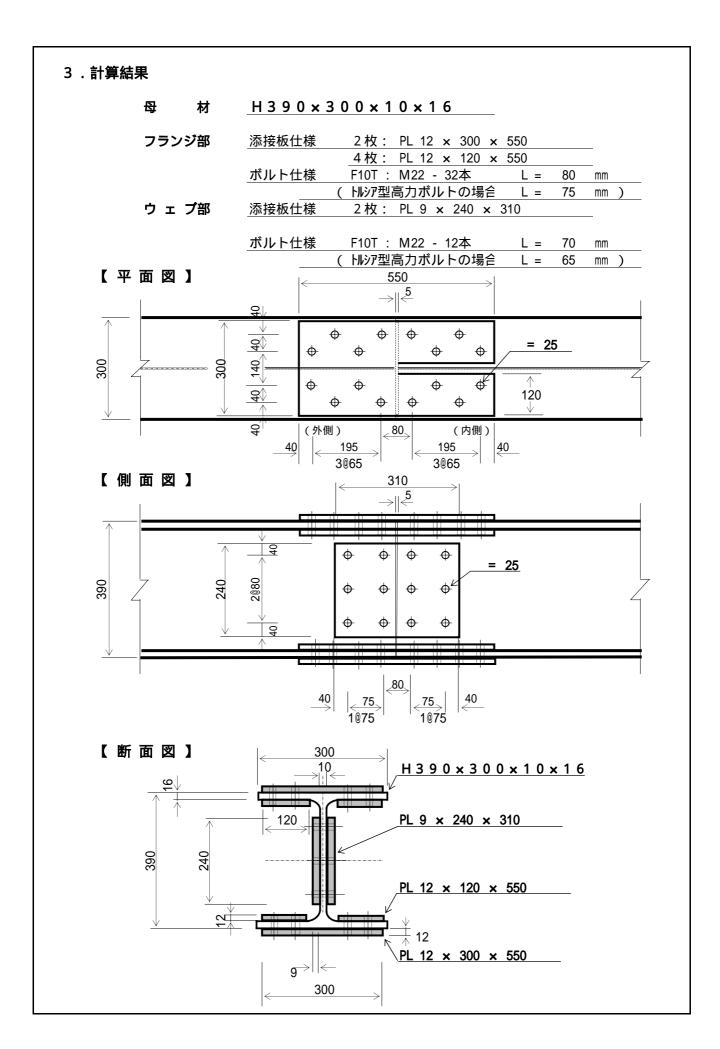
$$_{P} = \frac{Sr}{_{P}Aw}$$
 $_{P} a$

 $=\frac{382050}{2970}$ = 129 N/mm² < 135 N/mm² -OK-

添接板断面積 _PAw = 29.70 cm²

 $= 2970 \text{ mm}^2$

ボルト1本の耐力 (F10T)


$$M 22$$
 $_BA = 1/4 \cdot \cdot d^2 = 3.801 \text{ cm}^2 380.1 \text{ mm}^2$
 $S1 = 2 \cdot _BA \cdot _B \text{ a} \quad (二面せん断)$
 $= 2 \times 380.1 \times 220 = 167244$
 $S2 = d \cdot tw \cdot _H \text{ a} \quad (鋼板の支圧)$
 $= 22 \times 10 \times 441 = 97020$ (最小) $_{wb}$ Sa
 $Rs = \frac{Sr}{m1 \cdot m2} = \frac{382050}{2 \times 3}$
 $= 63675 \text{ N} < 97020 \text{ N} -0\text{K}-$

(6) ウエブボルトの合成応力

(最外端ボルトの応力) X方向成分(曲げ) Rx = 34656 N/本 Y方向成分(曲げ) Ry = 16245 N/本 Y方向成分(せん断) Rs = 63675 N/本

$$R = \sqrt{R x^{2} + (Ry + Rs)^{2}}$$

$$= \sqrt{34656^{2} + (16245 + 63675)^{2}}$$

